
 

WeekllsectionPCAts

Agendafortoday
mini linear algebra review

one derivation of PCA
to show how covariance matrix

eigenvectors show up
generative forms ofPCA
SVD overview relation to PCA
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Goalof PCA find directions in p dimension space thatC

explain the most variation

among n data points

Data matrix P dimensions
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How do we get to this more compact representation

Center the data Xo X 61Mean X
subtract the mean along dim 1 from all X's diml
Subtract the men along dim 2 fromall X's dim2



Centered data dimh AB f
o eachdot is

o an individual
UA o

O

_din
o 0

Which direction via or IB describe thedata most efficiently

Take the projection of each pointonto via or iB
form a perpendicular line from the point to the vector
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What would be the best direction
centered

cThe projection of data point Xi onto direction U is
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Objective We want the M Mn to

be as far apart as possible
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X is centered
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We want to find vector it that maximizes it I



What is XTX
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This is almost the sample covariance matrix
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Let's replace X TX in our objective with q

We want to find vector it that maximizes it in



We also want a unique T in particular a Jr
that satisfies Hill L Hill iitin Egad

this is a constrained optimization problem
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How to solve Lagrange's method

Maximize L its in Xlviii 1
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This is an eigenvalue relationship

The solutions to our maximization problem are

the eigenvectors of f
a vector u is an eigenvector of matrix A
if Au tu where X is a number



Going back to our objective we want

the vector in that maximizes it in

Var data along a out a It tu
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The eigenvector of with the largest

eigenvalue is the director that explains

the most variance in thedata PC 1

what would be the next best direction
The eigenvector w the 2nd largest eigenvalue PC2
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See jupyter notebook for a more involved example



Usesfor PIA

the eigenvalues of the eigenvectors of describe

the variance in the data explained along those eigenvectors
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II PC
w peffective

dimensionality

can project data onto the eigenvectors to get scores

X projection onto Pcl
Ipc

P

projection onto Pcd Lpc2
P
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can look at loadings within the eigenvectors

the contribution of each dimension in that direction

PC 1 contribution ofgene l contribution ofgene p
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marginalize probabilistic PCAover Zk
Tipping Bishop 1999

If 0 top factor analysis
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Data
x i.siffiii

is a

European
individuals

Did PCA on X to find the directions in
the data that explain the most

variances

i ist
individual onto
the first 0
two PCs

people of sane country of origin cluster together
in PC space
the directions in gene space that maximize variation

in the data resemble geography



SVDisingularvalueDecompositionL
A column centered matrix X'can be decomposed like so
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along the diagonal Zeroes everywhere else

r is the number of independent rows Icolumns in X

for instance for X µ
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If you believe me that we can write XIU SWT

X US wt US WTF pluginSVD
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For any Tj vij SIUI s it's an eigenvector
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ConnectionbetweenSVD andPCA

The w Wp vectors from SVD
are eigenvectors of XtXpp fi

The principal directors in PCA
are the eigenvectors of n

the data covariance matrix Xn
c

From above using SVD

Apply w'ftp fi g LY
p p

Now divide bothsides by n 1
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So the singular values S Sr from SVD
can be used to get the explained variance

for each principal component 5,2
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